

A water-secure world

Presentation Overview

- Setting the scene: Water goals, targets and definitions
- Proposed indicators to support water use efficiency and sustainable withdrawals
- Considerations for implementation
- Supporting data and tools
- Concluding remarks

Water and the SDGs

- MDGs: water security for direct human needs received prominence
- SDGs: broader context of water security to address the water needs of all sectors, cross-sectoral challenges, and risks

Target 6: Ensure availability and sustainable management of water and sanitation for all

- 6.1 Drinking water
- 6.2 Sanitation
- 6.3 Water quality
- 6.4 Water use efficiency
- **6.5 IWRM**
- 6.6 Protection/restoration of water-related ecosystems.

Target 6.4: Defined

By 2030,

- substantially increase water-use efficiency across all sectors
- ensure sustainable withdrawals and supply of freshwater to address water scarcity, and
- substantially reduce the number of people suffering from water scarcity.

Target 6.4: Key Terms

- Water (use) efficiency: "doing more and better with less" (aka water productivity)
- Water withdrawal: water removed (permanently or temporarily) for final consumption or production (*cf* water consumption)
- Water scarcity:
 - Physical: available resources insufficient to meet all demands, including minimal environmental flow requirements
 - Economic: lack of investments in water or lack of human capacity to keep up with water demand

Proposed Indicators

- Water Use Efficiency: Weighted measure of value/energy per unit of water consumed/withdrawn across different sectors
- Sustainable Water Withdrawal Index/Natural Water
 Capital Index: Measure water withdrawals in relation to available water (taking into account environmental water requirements)
- Water Scarcity Index (in development): Combination of human impact values associated with water scarcity (e.g., crop yields, power supply, and drinking water availability)

Task Team on water withdrawals and productivity

Proposed Indicators: Water Efficiency Index

How to improve water use efficiency (WUE)?

- Increase the productivity per unit of water consumed (e.g., change crop varieties, improved timing/application of water, non-water inputs)
- Reduce non-beneficial depletion (e.g., nonbeneficial evaporation, flows to sinks)
- Reallocate water among users (e.g., from lower to higher value uses)
- Tap uncommitted flows (e.g., storage, water reuse)

Range of technical, managerial and policy interventions

Do improvements in WUE always lead to reduced water use?

Rice-Wheat Zone, Punjab Province, Pakistan

A water-secure world

Do improvements in WUE always lead to reduced water use?

US GDP in \$2005; Water withdrawals in km³/year.

Not necessarily. Need to consider overall benefits, trade-offs (economic, environmental and social) and capacity to manage.

Task Team on water withdrawals and productivity

Composite indicators

Composite solutions

Alternative Solution

- Solar power as cash crop with a guaranteed market at attractive price.
- Reduce financial cost of subsidies
- Incentives to sell back solar power rather than pump groundwater
- Reduce the carbon footprint

Sukhdev Vishwakarma and his daughter Meenu both farm workers, use water pumped from a solar water pump at the farms of Gurinder Singh, a farmer with a land holding of 80 acres in Jagadhri.

Prashanth Vishwanathan /IWMI

Tools to support implementation: Water Accounting +

- Water accounting quantifies available water resources and their use by constructing water balances, over time and space, of varying complexity and detail.
- Water Accounting Plus:
 - open access platform to calculate water productivity
 - data and hydrological models to assess potential cross-sectoral impacts of various management and investment decisions

A water-secure world

Water Accounting +

Water Sheets	Purpose
	Hydrological, manageable, utilizable flows,
Resource Basin	water security, sustainability
Evapotranspiration	Beneficial & non-beneficial flows
	Biomass returns, carbon sequestration,
Productivity	food security
Withdrawal	Management, regulations, allocations

Tools to Support Implementation: Environmental Flows

- Environmental Flow Calculators (desktop rapid assessments)
- Maps of Global Environmental Water Requirements by different environmental management classes (EMC)

Examples of EMCs A-D, Smakhtin and Eriyagam, 2008

Tools to support implementation: Other Data Sets

 Aquastat: FAO's water information system: water resources, water uses, and agricultural water management: http://www.fao.org/nr/water/aquastat/main/index.stm

Irrigated/Rainfed area maps

Global, national water data sets on water availability, water withdrawals, environmental water requirements

Going Forward: Bridging Policy and Research for Strengthened Capacity

- Setting national targets that align with the SDGs and suit the national context
- Establishing realistic indicators that can be supported by national/international data sets
- Identifying investment choices that consider efficiency, equity and sustainability needs and trade-offs
- Supporting implementation through data collection and monitoring

References

Ahmad, M.D., H. Turral, I. Masih, M. Giordano, Z. Masood. 2007. "Water saving technologies: myths and realities revealed in Pakistan's rice-wheat systems. IWMI Research Report No 108. IWMI: Colombo, Sri Lanka.

Bastiaanssen, W. G., Karimi, P., Rebelo, L. M., Duan, Z., Senay, G., Muthuwatte, L., & Smakhtin, V. 2014. Earth observation based assessment of the water production and water consumption of Nile basin agroecosystems. Remote Sensing, 6(11), 10306-10334.

Gleick, P. 2014. Peak Water: United States Water Use Drops to Lowest Level in 40 years: http://scienceblogs.com/significantfigures/index.php/2014/11/05/peak-water-united-states-water-use-drops-to-lowest-level-in-40-years/

Global Expanded Water Monitoring Initiative (GEMI). 2015. Monitoring Waste water, water quality and water resources management: Options for indicators and monitoring mechanisms for the post-2015 period.

Gollehon N, 2014. Trends in US Agriculture and Effects of Improved Irrigation Efficiencies. Workshop: Going Beyond Agricultural Water Productivity. USDA-ERS, The World Bank, and IWMI – Dec. 8-9 Washington DC.

Shah, T. 2009. Taming the anarchy: groundwater governance in South Asia. Washington, DC, USA: Resources for the Future; Colombo, Sri Lanka: International Water Management Institute. 310p.

Smakhtin, V.U. and Eriyagama, N. 2008. Developing a software package for global desktop assessment of environmental flows. Environmental Modelling & Software, 23: 1396–1406.

van der Bliek, J., P. McCornick, and J. Clarke. "On target for people and planet." 2014. IWMI: Colombo, Sri Lanka.